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Registering Multiview Range Data to Create 3D Computer ObjectsG�erard Blais Martin D. LevineAbstractThis research deals with the problem of range image registration for the purpose of buildingsurface models of three-dimensional objects. The registration task involves �nding the trans-lation and rotation parameters which properly align overlapping views of the object so as toreconstruct from these partial surfaces, an integrated surface representation of the object.The approach taken is to express the registration task as an optimization problem. We de�nea function which measures the quality of the alignment between the partial surfaces containedin two range images as produced by a set of motion parameters . This function computes a sumof Euclidean distances between a set of control points on one of the surfaces to correspondingpoints on the other. The strength of this approach resides in the method used to determinepoint correspondences across range images. It is based on reversing the range�nder calibrationprocess, resulting in a set of equations which can be used to directly compute the location of apoint in a range image corresponding to an arbitrary point in three-dimensional space.A stochastic optimization technique, Very Fast Simulated Reannealing (VFSR), is used tominimize the cost function.Dual-view registration experiments yielded excellent results in very reasonable computationaltime. A multiview registration experiment was also performed, but a large processing timewas required. A complete surface model of a typical 3D object was then constructed fromthe integration of its multiple partial views. The e�ectiveness with which registration of rangeimages can be accomplished makes this method attractive for many practical applications wheresurface models of 3D objects must be constructed.
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31. IntroductionIn many practical applications it is desirable to generate three-dimensional models of real objects.Possible areas include object recognition, robot navigation, CAD input and computer graphics.For object recognition, a 3D modeling system could be used to create a 3D representation frommultiple views of an object. This could be then be compared to a database of object models toidentify it. For robot navigation, one may require a mobile robot to move about and map itsenvironment. A model of the surroundings could be used by the robot for path planning andcollision avoidance. In manufacturing, it is often desirable to input detailed shape speci�cationsfor an already existing part into a CAD program. A 3D modeling system could be used forthis task as well. In certain computer graphics applications, the system described in this papercould be used for the creation of arti�cial scenes and objects representing real world objects(i.e., virtual reality).To obtain surface information about a scene, the human visual system makes use of two eyesseparated by a small distance and computes the depth(range) from the discrepancies betweenthe images in both eyes. This is the principle behind stereo vision. It is a very complex processwhich is an active subject of research but still not yet completely understood. Besides stereovision, humans also use certain optical information, such as shadows, to determine the shapeof objects. This has spawned various areas of research collectively referred to as shape-from-Xtechniques. These attempt to derive surface structure from other surface information (shape-from-shading, shape-from-motion, etc.). A more practical approach for extracting the surfacestructure, and thereby modeling an object, is to obtain the surface information directly using arange�nder.A range�nder image consists of a two-dimensional array of 3D points representing the surfaceof the 3D object. In this paper, the approach we took to modeling an object was to obtainmultiple range images from various viewing positions (active vision) and then to piece themtogether to form the model. The registration of the range images was accomplished using arigid 3D transformation (only translation and rotation was permitted). Because of the multiplerange views, we need to determine many such transformations and express all views in a uniquecoordinate frame such that they are perfectly registered.More formally, given N views of an object in a scene, each one describing the 3D structureof the object as seen from a particular viewpoint, we wish to �nd N rigid motion transformationsT1, T2, ... , TN , that specify the true positions of the range�nder with respect to a unique frameof reference (arbitrarily chosen and usually the frame of one of the views). Given that eachrange view i(i = 1; : : : ; N) consists of a set of 3D points Si expressed in the coordinate frame
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4of the range�nder, the transformation Ti transforms the points Si of range image i into a newset of points S 0i = T (Si) in which the 3D coordinates of the points are expressed in a uniquecoordinate frame. By transforming the sets of points of all N range views, we can generate anew set of 3D points which is the union of all transformed sets S 01; S 02; :::; S 0N, namelyS = N[i=1Ti(Si) = N[i=1S 0iThis new set of points represents the surface boundary model of the object de�ned by all theviews.A novel approach for solving this problem of range image registration is presented in this pa-per. It is a relatively simple method and combines both (i)speed of execution and (ii)robustnessto noise in the range data and positioning errors in the mechanical apparatus used for dataacquisition. For example, the method is suitable for use with an eye-in-hand system, wherethe range�nder is attached to the end of a robot arm, which is generally known to be a rathersloppy absolute positioning device.To achieve accurate registration, a cost function is de�ned which indicates the quality ofregistration of two range views by a sum of distances between corresponding points in each view.These range views are registered by determining the 3D rigid transformation which minimizesthe cost function. The novelty of this approach is a method for reversing the calibration processof the range�nder which permits point correspondences between range views to be computeddirectly. This results in an extremely fast method for computing the distance between rangeviews, as required by the evaluation of the cost function. Stochastic search is used to �nd thetransformation which minimizes the cost function in a reliable manner, even in the presence ofthe multiple local minima present in the cost function.Section 2 describes the di�erent approaches which have been developed for solving the rangeimage registration problem. In Section 3, the essential aspects of our registration method arepresented and registration is formulated as an optimization problem. Section 4 discusses thetesting of the method by performing several registration experiments. Finally, in Section 5, var-ious aspects of the registration approach are discussed and possible improvement are suggested.2. Previous WorkThe methods used for range image registration can be divided into two main categories. The�rst avoids the registration problem altogether by relying on precisely calibrated mechanicalequipment to determine the motion transformation between views. These methods assumethat the inter-view transformations provided by the data acquisition apparatus are su�cientlyaccurate to properly register the range views and do not need to be improved upon. Theycan be viewed as open loop systems, where the registration transformation provided by the
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5acquisition apparatus is accepted blindly without veri�cation. Some of these open loop methodsare described in Section 2.1.The second category involves methods that derive the registration transformation betweenrange images from the information contained in the range images and other information providedby the acquisition system. In distinction to the �rst category, these can be viewed as closed loopsystems where the transformation parameters are gradually updated and re�ned until the rangeviews are precisely registered. A feedback function measuring the quality of the registration isused. In most cases, an estimate of the transformation between each pair of range views is partof the available information. However, it is assumed that this is only a coarse approximation tothe true registration transformation and that it must be readjusted in order to properly registerthe range views. These methods are presented in Section 2.2.2.1 Open Loop Registration TechniquesAs indicated above, many researchers have circumvented the problem of searching for theappropriate motion transformation to register two range images by simply relying on accurateand precise hardware. For example, Sakaguchi et al. [10, 11] have utilized this technique togenerate octree models of 3D objects. Both a precision turntable and an eye-in-hand systemwere used for data acquisition. The authors do not discuss how the registration of views obtainedwith the movable eye-in-hand system were performed. However, similar to the views acquiredwith the turntable, it is very likely that they employed the positional estimate of the robot armin order to determine the transformation between range views.Vemuri and Aggarwal [16] also relied on a calibrated system to obtain inter-frame transfor-mations. They made use of a turntable (base plane) on which the object to be modeled wasplaced. A pattern was drawn on the base plane which permitted the inter-frame transformationto be deduced by observing the orientation of this pattern in the intensity image.Similar to Sakaguchi et al., Potmesil [7] has used an octree representation for creating 3Dmodels from intensity images. But instead of combining range views, conic volumes, generatedfrom silhouettes of the object, were merged. To merge the di�erent conic volumes, Potmesilused a camera calibration technique to �nd the position of the sensor with respect to a �xedframe of reference. Srivasta and Ahuja [14] have employed a similar method and tested theiralgorithm with arti�cial 3D data, for which they could directly derive the views from any desiredposition.Again employing arti�cial data, Roth-Tabak and Jain [8] simulated a system in which asensor was moved around its environment in order to build an internal representation of itssurrounding world. Because they knew the exact position and orientation of the sensor withrespect to the global coordinate system of the world, they could register all sensor views into a
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6common frame of reference.In many cases, the inaccuracy of open loop systems is acceptable, but there are situationswhere more precise registration is required. This is true even when using turntables. In orderto improve on model accuracy, closed loop systems must be considered.2.2 Closed Loop Registration TechniquesRegistration methods can make use of information contained in the views to be registered toderive the appropriate motion transformations relating them. Two possibilities exist. The �rstconsists of methods that compare the di�erences in the structure of the surface across views.This comparison is performed over the entire surface or over a set of control points on thesurface. The second consists of methods which register range views by matching features fromone view with those from the other.The approach taken by Potmesil [6] is to compare surface di�erences between range viewsand to �nd the rigid 3D transformation which minimizes those di�erences. The di�erent viewsof the object were acquired so as to guarantee partial overlap. The matching algorithm usedheuristic search to align overlapping surface segments in a common 3D coordinate system. Acost function was de�ned to measure the quality of the registration. It was assumed to beit/unimodal and measured orientation and shape di�erences between a set of control pointsin the �rst view and corresponding points in the second. Correspondence across views wasestablished by a ray-casting procedure. The matching algorithm minimized these di�erencesover all of the control points, thereby maximizing shape similarity.Cheng and Medioni [4] employed an iterative method to register two range images. An initialestimate of the transformation was assumed to be available. Range views were registered byminimizing the distance from control points in one view to planes in the other. A line-surfaceintersection algorithm was used to determine the point in the second view which was intersectedby a line originating from a control point in the �rst view and in the direction of the normalat that point. This is similar to the way Potmesil [6] established correspondences across rangeviews. Once the intersection point was found, the equation of the plane, tangent to the surfaceat that point, was determined. The distance measure was de�ned as the Euclidean distancebetween the control point in view 1 and the corresponding tangent plane in view 2.Our method is similar to that of Cheng and Medioni's [4] . The main di�erence is their useof a line-surface intersection search algorithm to determine point correspondence between rangeviews. In our approach, correspondence is established directly through an inverse calibrationfunction. Thus, the main advantage of our approach is that it eliminates this search by it/directlycomputing the location of the most likely correspondence point. This results in an extremelyfast metric for the evaluation of inter-surface distance. This metric is then the basis for a cost
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7function which is optimized in order to register range views.Szeliski [15] has proposed a registration method which does not require a transformationestimate or knowledge of correspondences between the two views. A motion estimate is obtainedby �nding the geometric transformation which makes it most likely (in a Bayesian sense) thatthe points come from the same surface. The major disadvantage of this approach is that therange data from two views are assumed to be sampled from the same smooth surface. Thisassumption is very unrealistic from a practical point of view. The method would only work wellwith very smooth and regular surfaces. This is not the case for the majority of objects in theworld, most of which contain edges and many of which have textured surfaces.The registration method described by Soucy [13] compares surface structures across rangeviews to determine the best registration transformation. The latter may be nonrigid, meaningthat the surfaces are allowed to deform in order to be properly registered. To register tworange views, a curvature consistency algorithm was �rst applied to each image, so that thelocal curvature �eld varied smoothly over the whole image and sharp transitions are smoothed.The �rst view was then divided into a set of rectangular patches and a few (5 to 10) ofthese were selected for registration. Each of the selected patches was then �t to the surfaceof the second view. The basis of Soucy's approach is the minimization of a functional thatmeasures the di�erence between a local neighborhood in one image and a corresponding one inan adjacent image [13]. Soucy demonstrated qualitatively that the functional became convexafter a su�cient number of iterations of the curvature consistency algorithm. Then, assumingunimodality of the functional, a simple gradient descent algorithm was used to �nd the bestmotion parameters for each patch. Once all the selected surface patches were been �t to thesecond view, their motion parameters were propagated to their neighboring patches in the �rstview. The propagated parameters were adjusted for each patch so that the it touched thesurface of the second view and the relative rotation minimized the di�erence metric. Thenthese patches propagated their motion parameters to their respective neighbors and so on, untilall patches had motion parameters assigned to them.The last stage imposed motion consistency. The relative position and orientations of thepatches were adjusted so that they reected as closely as possible the relative position andorientations that they had in the original view before the transformation. The positions andorientations of these patches were iteratively updated until the desired level of rigidity in thetransformation of the original surface structure was obtained.This aspect of the method is advantageous in the sense that, by controlling the amountof rigidity in the transformation, one is able to partially compensate for possible distortionsintroduced by the range�nder during the acquisition of the range images. The disadvantage ofthis approach is the excessive amount of computing time.The approaches presented above all compare surface information between views in order to
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8register them. Other methods make use of features extracted from the range surfaces to guidethe registration. For example, Cheng and Don [3] invoked the principle of invariance of distancemeasures under rigid body motion. They chose a triangle of points 4P1P2P3 from the �rstview and then found the best matching triangle in the other. There are other methods whichare partially related to the registration problem. For example, the one proposed by Shah andJain [12] solved the correspondence problem in 2D by matching corners across image frames.Chen [2] has devised a technique for determining the pose of an object in a scene based on aknown model. The sensory data were lines and the reference model was in the form of planes.To determine the pose of the object, a closed-form solution was found for a set of line-to-plane correspondences. So here again features are matched in order to determine a motiontransformation. However, the problem with these techniques is that they rely on accuratefeature extraction prior to registration and this process is very prone to error.Finally, the reader might wish to consult Sabata and Aggarwal [9] for a review of the problemof estimating motion from a pair of range images. The method discussed in this paper has theadvantages of the surface matching algorithms of Potmesil [6] or Cheng and Medioni [4], in thesense that no feature extraction step is necessary. However, the point correspondence problemrequired by these techniques is eliminated by using inverse camera equations to directly computethe position of corresponding points across range views.3. Registration using Inverse Camera Calibration3.1 Registration Method OverviewThe range�nder used for this research provides a two-dimensional sweep of the surface of a scene.A range image consists of a variable size rectangular array of depth values of points sampledon the surface of the scene. In this research, we have used a maximum size 256 by 256 rangeimages. In order to derive the 3D coordinates of each sampled surface point, the range�nder iscalibrated before data acquisition so that, given the index i and j in the rectangular array for agiven point, and given the depth measured for the point, its coordinates (x; y; z) with respectto the camera's reference frame can be computed directly. If one thinks of each image point asbeing sampled by a di�erent laser ray, then the indices i and j would specify which ray sampledeach point. Figure 1 shows a surface sampled by the range�nder.The principal idea behind our method is to reverse this process whereby the coordinates ofthe point are computed through calibration. This inverse calibration permits us to match pointsacross range views. Given a transformation T from range image 1 to range image 2, a 3Dpoint (x; y; z) in range image 1 is transformed to (x0; y0; z0) in image 2's reference frame. Usingthe inverse calibration we are able to determine directly the indices (i; j) of the ray in image 2
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Figure 1:This �gures shows how the range�nder gathers information about thesurfaces in a scene. A surface is sampled in a grid-like fashion and the z valuesobtained are stored in a two-dimensional array. The indices of the array representthe particular ray in the 2D scanning grid which sampled the given point. Thevalue zij would thus be stored in location (i; j) of the range image array.closest (Euclidean distance) to that transformed 3D point. Since every point in a range imageis obtained by sampling the surface with a di�erent ray, the point in image 2 associated withthe (i; j) ray is thus taken as the corresponding point.To perform the registration, control points(pixels) are selected from the �rst range view byuniform subsampling. These are mapped by a rigid 3D transformation T into the second view'sreference frame. Each transformed control point is then associated with a point in the otherview. This point-to-point correspondence is directly established through the inverse calibrationprocess. A distance measure, based on a sum of Euclidean distances between the transformedcontrol points of the �rst view and their respective corresponding points in the second view, iscomputed. The objective is to �nd that transformation T which minimizes this distance measure.A transformation estimate Te, obtained from the acquisition apparatus, is used to constrain thenumber of possible transformations. Thus, a �nite search space is delimited around the estimateTe and only those transformations inside this search space are considered as potential solutionsfor the registration. The inverse calibration process is detailed in Section 3.3.By minimizing the sum of Euclidean distances between all control points in one view andtheir respective corresponding points in the other, the distance between these views is minimized.Since the sum of distances is a minimum when surface regions that are common to both viewscoincide, we can conclude that the views are registered. The sum of Euclidean distances is thebasis for a cost function used by an optimization algorithm. This cost function will be describedin detail in Section 3.2.
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10Note that for proper registration of range views to take place, it is essential that there bean overlapping region between the two views.We now summarize the various aspects of this method:� The object of the view correspondence search is to �nd a rigid motion transformationT = (tx; ty; tz; rx; ry; rz) which best registers the views.� The range�nder used for this research produces range images consisting of two-dimensionalarrays of depth values.� The range�nder is calibrated so that, given the indices i and j in the array of sampledpoints and the depth measured for the sampled point, the x, y and z coordinates of thecorresponding 3D point can be derived.� The calibration process can be reversed. That is, given the coordinates x, y and z of a3D point, the corresponding indices i and j in the range image can be found.� This reverse calibration process is a means of establishing point-to-point correspondencesacross views.� The transformation is found by performing a search in parameter space for a transforma-tion T in the vicinity of a transformation estimate Te.� The goal of the search is to �nd the transformation T which minimizes the sum ofEuclidean distances between transformed control points of one view to the correspondingpoints in the other, correspondence being established using the inverse calibration.3.2 Formulating the Registration Task as an Optimization ProblemThe objective of the registration task is to �nd a transformation T which best represents therelative displacement and orientation between two range views. An optimization algorithm isused to search for the best transformation. Therefore, we must de�ne some kind of measure bywhich transformations can be ranked based on the quality of registrations they produce.We will now formally de�ne the cost function needed for optimization. Let Sc be a set ofcontrol points taken from the total set of points in the �rst view. Sc is a subset of all sampledpoints in that view. Let T be the transformation which takes a point in the �rst view andexpresses it in the reference coordinate frame of the second. If ~p is a point in the �rst view,then T (~p) is the same point expressed in the second view's coordinate frame. We specify arigid 3D transformation by six motion parameters, consisting of three translations tx; tyandtz,and three rotation angles rx, ry and rz. From these motion parameters, we de�ne a translationvector ~d and a rotation matrix R as follows:
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11~d = 0BB@ txtytz 1CCA (1)R = 0BB@ cycz �cysz sycxsz + sxsycz cxcz � sxsysz �sxcysxsz � cxsycz sxcz + cxsysz cxcy 1CCA (2)where sx = sin rx sy = sin ry sz = sin rzcx = cos rx cy = cos ry cz = cos rzWith these de�nitions, T (~p) is simplyT (~p) = R~p+ ~d (3)Let C() be the correspondence function de�ned by the camera's inverse calibration equationsde�ned in Section 3.3. If ~q is a point in the �rst view's coordinate frame, then C(~q) is thepoint in the second view whose associated ray is closest to point ~q. The input to the functionare the coordinates (x; y; z) of a 3D point. From these coordinates, the indices i and j of theclosest ray in the second range image are found using the inverse calibration equations. Theresult is the 3D point in the range image at location (i; j). It is possible that the indices i and jfound by the inverse calibration equations do not represent any valid point in the range image.This would be the case if the indices i and j represented a datum point that has been discardedduring the preprocessing of the range images. Also, because a range image has a maximum of256 by 256 sampled points, it is possible that the values of i and j computed from the inversecalibration equations are outside the allowed range of the indices, which must be between 1 and256. In such cases, C() would return unde�ned as a result to indicate that no correspondencehas been found. Given a transformation T , we de�ne a cost function for T as follows:cost(T ) = X~p2Sc d (T (~p); C(T (~p))) (4)where d() is the 3D Euclidean distance (L2 norm) between two points. The cost function isan indication of the registration quality of the transformation T . The greater the accumulateddistance between points in the views due to a transformation, the higher the cost of thistransformation will be. Therefore, the transformation yielding the best registration of the rangeimages will be the one with the lowest cost. An optimization search can then be applied to �ndthe transformation T which minimizes this cost function.
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12When the function C() �nds no corresponding point for a given control point in Sc andreturns unde�ned, the L2 norm is unde�ned. Therefore, the cost function given by Equation(4) is inadequate. We must de�ne the distance function d() to deal with the case where C(T (p))is unde�ned. One solution is to set the distance value to 0 when no correspondence is found.As shown in Figure 2, improper point correspondences between two range views can occurat the edges of the object. If the distance between the points in such a correspondence islarge, it will a�ect the value of the cost function. Therefore, in order to limit the e�ect of theEuclidean distance on the cost function, a threshold � is introduced. The value of the distancethreshold limits the negative e�ects on the cost value of a good transformation that impropercorrespondences would have.If a distance is greater than the threshold, it is set to the threshold value. This is done sothat a large single point error will not mask a good transformation by arbitrarily increasing itscost . Thus the distance measure is de�ned as follows:d(~p1; ~p2) = 8>><>>: k~p1 � ~p2k ; if ~p2 is de�ned and k~p1 � ~p2k � �� ; if ~p2 is de�ned and k~p1 � ~p2k > �0 ; if ~p2 is unde�ned (5)Because the distance measure returns 0 when no correspondence point is found, a transfor-mation minimizing the number of correspondences would yield a minimum cost value. However,this is undesirable since very poor transformations will likely yield very few correspondences byde�nition. To alleviate this problem, the sum of the distances can be normalized by the numberof correspondences. Let Sc(T ) be the set of all control points for which a correspondence existsunder the transformation T . We rede�ne the cost function as follows:cost(T ) = P~p2Sc d (T (~p); C(T (~p)))kSc(T )k (6)There still exists a problem with the cost function de�ned in this way. Because no penalty isassigned to transformations yielding few correspondences, the cost function will nevertheless bea minimum when no correspondences are established between views. This issue can be handledby enforcing an overlap between views. Any transformation yielding less than the speci�edoverlap is then discarded by giving it the highest cost value. All transformations making theviews overlap by the speci�ed factor or more are then evaluated using the normal cost functionde�ned by equation (6). Specifying a minimum required overlap also has the advantage that onecan use prior knowledge about the overlap between the views to guide the optimization searchby imposing a constraint on the transformation search space. For example, if we know from thedata acquisition stage that the range images overlap by at least 40%, then this information canbe used to discard all transformations yielding less than 40% overlap.
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view 2Figure 2:This �gure illustrates the use for the distance threshold. Two rangeimages are acquired from the same scene (a cube on a plane). The pointssampled from the side of the cube (shown by a shaded region) in the �rst vieware unique to view 1. View 2 is a straight-on view of the cube and thus does notcontain any points sampled on the side of the cube. The cost function value of atransformation is derived from the sum of distance between all control points inview 1 and corresponding points in view 2. The control points from the side ofthe cube should not have any correspondences in view 2 since they are unique toview 1. However, because the points fall within the viewing range of view 1, eachcontrol point has a closest scan line and by de�nition a corresponding point inview 1. The distance between these false corresponding points is large and thuscould have a negative e�ect on the cost function value of a good transformation.The distance threshold limits the e�ect of such false correspondence by limitingthe distance values added to the cost function.
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14Let 
 be the overlap factor. For example, 
 = 0:3 means that at least 30% overlap betweenrange views is required . The overlap generated by a transformation T is simply the total numberof correspondences kSc(T )k divided by the total number of control points kSck. Because of thethreshold � , and because control points without correspondences result in a distance value ford() of 0, it is clear that no transformation can yield a cost value greater than the cardinality ofSc times the threshold value � . This idea is used to set the maximum value of the cost function.With this in mind, we rede�ne the cost function as follows:cost(T ) = 8><>: P~p2Sc d(T (~p);C(T (~p)))kSc(T )k ; if kSc(T )kkSck � 
�kSck ; if kSc(T )kkSck < 
 (7)The following algorithm illustrates how the cost function is computed for a given transfor-mation: Cost = 0NumCorrespondences = 0For all control points ~p in �rst range image [8~p 2 Sc]Transform ~p using transformation to get ~p0 [~p0 = T (~p)]Find point ~q in second range image corresponding to ~p0 usinginverse camera equations [~q = C(~p0)]If ~p0 has no correspondence ~q [if ~q = unde�ned]distance = 0 [d = 0]Else NumCorrespondences = NumCorrespondence + 1distance = Euclidean distance between ~p0 and ~q [d = k~p0 � ~qk]If distance > Distance Threshold [if d > � ]distance = Distance Threshold [d = � ]EndIfEndIfCost = Cost + distance [Cost = Cost+ d]EndForIf NumCorrespondences/NumControlPoints < Overlap Factor [if kSc(T )k=kSck < 
]Cost = NumControlPoints � Threshold [Cost = �kSck]EndIfNote that by establishing point-to point correspondence across range images using the inversecamera calibration equations, we in fact compute the sum of the distances between the tworange views in the direction of the rays. This is di�erent from the intuitive way of evaluatingdistance, where the distance between a point on a surface to the other surface is taken as
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15either the perpendicular distance or the distance to the closest point. One may argue that thesegive better indications of the distance between two views. However, as optimization progresses,and the registration between the two views improves, the distance along the scan lines willapproach the perpendicular distance. Figure 3 illustrates how the point-to point correspondenceis established between two range images.
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control points

point has no correspondence

range finder

position for view 2

laser rays

Figure 3:This �gure shows how point-to-point correspondence is establishedacross range images. After transformation, a control point in view 1 is put intocorrespondence with the point in view 2 having the closest ray.Figure 4 shows the process involved in evaluating the �tness of a transformation. At thetop , we see the acquisition of a typical range image where two images of a scene are obtainedfrom two di�erent viewing positions. The bottom shows how the registration quality of atransformation is evaluated in the optimization process. The �rst step consists of the selectingcontrol points in the �rst range image. These are then expressed in the coordinate frame of thesecond range image. This is done by applying to all control points the motion transformationwe wish to evaluate. Once the control points are mapped into view 2's reference frame, thecorresponding points in the second range image are determined (through the inverse cameracalibration equations). The cost function is then evaluated by summing the Euclidean distancebetween all control points and their corresponding points. Two transformation examples areshown. In the �rst, the transformation provides a good registration of the range images. In thesecond, the transformation is poor. Good registration yields small distances between controlpoints and their correspondences and hence results in low cost.
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Figure 4:This �gure illustrates the process of cost function evaluation. Thetop illustrates typical range data acquisition. The bottom shows how the costfunction is evaluated for a transformation. Two cases are illustrated; a good(left) and a bad transformation (right).
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173.3 Inversion of the Range�nder Calibration Process3.3.1 Coordinates Evaluation from Range�nder CalibrationIn order to determine the actual 3D coordinates (x; y; z) in space of a sampled point, therange�nder must �rst be calibrated. This produces a number of look-up tables and a set ofequations. These are used to compute the x, y and z coordinates of a sampled point expressedin the range�nder's frame of reference. The coordinates are obtained from the measured depthz of the point to the range�nder and from the positions i and j of two rotating mirrors (X-mirrorand Y-mirror) used to sweep the laser beam over the surface.Because the two-dimensional array of distances that constitutes the range image may containa maximum of 256 by 256 sampled points, the indices can take values from 1 to 256.The steps taken to compute the coordinates (x; y; z) of a point, given the value of z andthe indices i and j are as follows:1. y = z TAN [ j ] (8)2. � = qy2 + z2 (9)3. � = ALPHA[ i ] (10)4. x = �M [ � ] +B[ � ] (11)In the above equations, TAN , ALPHA, M and B are all calibration tables containing 256entries. These are generated only once during the calibration of the range�nder camera. Figure5 illustrates the relationship between the values of x, y, z, �, i, j and the TAN , M andB look-up tables. The TAN table used in Equation (8), as its name indicates, contains thetangent value for the orientation angle of the Y-mirror. Entries in the table correspond to eachof the 256 possible orientations of the mirror speci�ed by the j index.From Equation (9) and Figure 5 it can be seen that � is simply the length of the line segmentgenerated by the ray sampling the point projected onto the yz plane.The ALPHA table reects small mechanical inaccuracies associated with the galvometeractuating the X-mirror. When the mirror is instructed to rotate to its next discrete position,the mirror index i is adjusted. However, sometimes the mirror skips and advances by morethan one position or does not move at all. As a consequence, the i index value will not always
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,j)Figure 5:The geometric relationship between the 3D coordinates (x; y; z) andthe di�erent range�nder parameters are shown in this �gure. The coordinatereference frame is local to the range�nder. The X-mirror is in its ith discreteposition and the Y-mirror in its jth discrete position. The orientation of the laserray is de�ned by the TAN, ALPHA, M and B calibration tables. The angle of theline with respect to the z-axis is determined from the TAN table. The value of �is the length of the projection of the ray onto the yz plane. The actual X-mirrorposition is determined by the ALPHA table. From the X-mirror position, theposition and orientation of the ray away from the yz plane is determined by theM and B tables. These de�ne the slope and intercept of the ray in the x� plane,respectively.correspond to the actual position of the X-mirror. The ALPHA table is used to compensatefor this mechanical problem.Once �, the true index position of the mirror, is determined with the ALPHA table,Equation (11) yields the value of the x coordinate of the sampled point. This equation representsa line in the x� plane having B[�] as its x-intercept and M [�] as its slope. This line actuallycorresponds to the ray that the laser beam followed when it sampled the point on the surface.3.3.2 Reverse Calibration ProcessBy reversing the calibration process, we can compute the indices i and j from the coordinates(x; y; z) of a point in space. In other words, we wish to �nd which ray would be the most likelyto sample a point at an arbitrary position in space. For each ray (i; j) there is a correspondingsampled point in the (i; j) location of the 2D array of values forming the range image. Therefore,if we can associate a ray with a 3D point, we can establish a point-to point correspondencebetween the given 3D point and the (i; j) point in the range image.
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19a) Computing the Y-mirror index jThe inversion of Equation (8) permits us to determine the value of j from the values of y and z.Given the coordinate values y and z we wish to determine the index value j such that Equation(8) is satis�ed. The TAN table simply contains the tangent value for a series of 256 angles,each corresponding to the position of the Y-mirror. By taking the inverse tangent value foreach value in the table and plotting the resulting angle values with respect to the index values,a linear relationship emerges.This can be exploited to simply express the table as the tangent of a linear equation:TAN [j] = tan(�0 + �1j) (12)where �0 and �1 are the parameters of the line that was �t to the inverse tangent values of theTAN table.Inverting the table is now straightforward. From Equations (8) and (12) we derivej = arctan(yz )� �0�1 (13)In order to guarantee that the result obtained for j is always an integer, Equation (13) is roundedout to the closest integer value. We rewrite Equation (13) as followsj = $arctan(yz )� �0�1 + 12% (14)Equation (14) establishes a way to directly compute the j index from the (x; y; z) coordinates.The same procedure must now be accomplished for the i index.b) Computing the X-mirror index iFrom Equation (10) and (11) we observe that in order to compute the index i, three calibrationtables must be inverted. To invert Equation (10), the ALPHA calibration table must beinverted; and to invert Equation (11), the M and B calibration tables must be inverted. In thefollowing, the inversion process is explained for each of these two equations.b.1) Inverting the ALPHA Calibration TableThe relationship between ALPHA[i] and i can be approximated by a linear equation. A least-squares �t is performed on the points in the table as a function of the index to give:ALPHA[i] = �0 + �1i (15)Obtaining i from � is then achieved directly using the following equation
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20i = � � �0�1 (16)b.2) Inverting the M and B Calibration TablesWe can now consider the problem of inverting Equation (11). The goal is to determine theindex value � of the line with slope M [�] and intercept B[�] for which the point (x, �) isclosest in terms of the Euclidean distance. The value of � is obtained directly from Equation(9).We create a two-dimensional look-up table INV ERSE MB that uses discretized valuesof x and � as its indices, and returns the appropriate � value for that particular (x; �) point.The size of the table and the discretization parameters are set on the basis of the range�nder'slimitations and the desired accuracy of the inversion process. To discretize the x and � indices,a minimum and maximum value must be determined for each variable. The range�nder usedhas a range of about 10 to 90 centimeters in depth. From this we can setzmin = 100mmzmax = 900mmUsing Equation (8), along with the minimum and maximum values of the TAN calibrationtable, we derive the minimum and maximum values for y. Note that if the minimum value ofthe TAN table is negative, the minimum value of y is obtained by multiplying the maximumvalue of z by that value:ymin = 8<: zmax � TANmin if TANmin < 0zmin � TANmin if TANmin � 0 (17)ymax = 8<: zmin � TANmax if TANmax < 0zmax � TANmax if TANmax � 0 (18)Using Equation (9) and the min/max values of y and z as de�ned above, the min/maxvalues of � are determined as follows:�min = 8>>><>>>: qy2max + z2min if ymax < 0q0 + z2min = zmin if ymin < 0 and ymax � 0qy2min + z2min if ymin � 0 (19)�max = 8<: qy2min + z2min if jyminj > jymaxjqy2max + z2min if jyminj � jymaxj (20)Given �min and �max, we can then compute xmin and xmax using Equation (11) and themin/max values of the M and B calibration tables:
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21xmin = 8<: �max �Mmin +Bmin if Mmin < 0�min �Mmin +Bmin if Mmin � 0 (21)xmax = 8<: �min �Mmax +Bmax if Mmax < 0�max �Mmax +Bmax if Mmax � 0 (22)Knowing the minimum and maximum values, the range of possible values for x and � is wellde�ned. With this information, the INV ERSE MB table can now be constructed. The sizeof the table determines its accuracy. The larger the table, the more �nely discretized the rangeof possible values for x and �, and hence, the more precise it will be. The table is accessedby two indices xd and �d which range from 0 to xdim � 1 and �dim � 1, where xdim and �dimdelimit the size of the look-up table. The values of the indices xd, �d nearest to x and � areobtained directly in the following way:xd = $(x� xmin)(xdim � 1)xmax � xmin + 12% (23)�d = $(�� �min)(�dim � 1)�max � �min + 12% (24)The (x; �) point corresponding to a given INV ERSE MB table entry (xd; �d) can besimply determined from the inverse equations:x = xd(xmax � xmin)(xdim � 1) + xmin (25)� = �d(�max � �min)(�dim � 1) + �min (26)To construct the table, the closest ray, one out of a possible 256 de�ned by the M and Bcalibration tables, to each discrete point (x; �) in the table is found. The index � of that ray isstored in the INV ERSE MB table at that given position. Figure 6 illustrates the relationshipbetween the values in the INV ERSE MB table and the 256 rays de�ned by the slope andintercept in the M and B calibration tables. The lines all lie in the x-� plane. The rectangularregion de�ned by xmin, xmax, �min and �max represents the extent of the INV ERSE MBlook-up table. An entry in the table is set to the index of the ray closest in Euclidean distanceto the discrete (xd; �d) point corresponding to that entry.There are entries in the table for which the (xd; �d) values correspond to points in spacewhich could not possibly have been scanned by any ray. These are the points which fall outsidethe viewing range of the range�nder, but are nevertheless within the range of the table. InFigure 6 these table entries correspond to the shaded areas inside the table region where norays are present. In the INV ERSE MB table, an entry with a value of 0 indicates that no
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minFigure 6:This �gure shows the 256 rays de�ned by the slope and interceptvalues contained in the M and B calibration tables. The region delimited byxmin, xmax, �min and �max de�nes the extent of the INVERSE MB table.Each entry in the table corresponds to the � value of the line closest to the(xd; �d) point matching that entry. The areas inside the rectangular region,where no rays are present, represent points that are outside the viewing rangeof the range�nder. The table entries in these areas are set to 0 to reect this.ray is close enough to account for it. The other entries are set to an integer between 1 and256, representing the value of the � index of the closest ray.In order to delimit the shaded areas properly, we de�ne two additional rays with slopes andintercepts extrapolated from the extremities of the M and B tables. Since the � index forthese tables varies from 1 to 256, we call the two extrapolated rays, 0 and 257. The slope andintercept values for these lines are determined directly by evaluating third order polynomialsderived for M and B at 0 and 257.Now, all the elements required to build the table are available. It is constructed as follows:1. For each entry position in the table, compute the (x; �) coordinate corresponding to theindices xd and �d of that table entry using Equations (25) and (26).2. Compute the Euclidean distance from point (x; �) to all 256 scan lines and to the twoextrapolated rays.3. If the closest line is either one of the two extrapolated lines (line 0 or 257), then write a0 in the table entry at position xd and �d.4. If the line closest to the point (x; �) is the line with slope M [�] and intercept B[�], thenwrite � in the table entry at position xd and �d.
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233.3.3 Summary of Calibration Process InversionThe reason for inverting the calibration process is to have a means of establishing a correspon-dence between views. The forward process of calibration consists of computing the (x; y; z)coordinates of a point from the depth value z of that point along with the indices i and j of itslocation in the array of points sampled by the laser range�nder. Equations (8) to (11) describehow this is accomplished. The reverse process consists in computing the indices i and j fromthe (x; y; z) coordinates of a point. This is equivalent to �nding the closest ray to the 3Dpoint de�ned by the coordinates. Thus, a 3D point whose closest ray is the (i; j) ray, is put incorrespondence with the point in the range image array at location (i; j).The reverse calibration process is done as follows:1. Compute j from y and z using Equation (14).2. Compute � using Equation (9).3. Compute � from � and x by using the INV ERSE MB look-up table.4. Compute i with Equation (10).4. Experiments and ResultsThis section presents the experiments conducted in conjunction with this research. A briefdescription of the experimental setup and the data acquisition process is given in Section 4.1.Considerable experimentation was carried out to determine the characteristics of the costfunction For most range images tried, these usually indicated the presence of a single globaloptimum surrounded by multiple local optima. As a consequence, to ensure successful min-imization for many di�erent types of object surfaces, it became evident that we had to relyon a robust search method. A conventional gradient descent approach would be inadequate.Thus Very Fast Simulated Annealing (VFSR), a stochastic optimization method, was used tominimize the cost function [5]. Section 4.2 discusses the search parameters used for VFSR andthe values of these parameters yielding optimum performance for registration.Section 4.3 presents various dual-view registration experiments. Each consists of the regis-tration of two range views obtained by sampling an object from two di�erent viewing positions.For one object, the experiment is examined in detail, while only the �nal results are shown forthe others. Finally, in Section 4.4, a multiview registration experiment is presented. The notionof local/global optimization arising when registering multiple views of an object is examined anda solution is presented.
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244.1 Experimental Setup and Data AcquisitionAn eye-in-hand system was used for the acquisition of the range images. It consisted of arange�nder camera attached to the end e�ector of a PUMA 560 robot arm. The robot isinverted and mounted on the ceiling to permit easier positioning of the camera for viewingobjects at various angles.An alternate method was a turntable. While maintaining the range�nder camera in a �xedposition, a precision turntable was used to accurately rotate objects so that sampling them fromdi�erent viewpoints could be achieved. The position of the turntable can be speci�ed as anabsolute angular value in degrees.We have determined by experimentation that the sampling error of the laser range�nder isGaussian distributed and that a linear relationship exists between the average sampling error(average of the absolute values) and the object distance[1]. In most experiments conducted forthis research, data acquisition was performed with the range�nder at a distance of around 40centimeters from the object, sometimes more depending on the size and shape of the object.At this distance the average error in the measured distance of a sampled point is approximately0.625 millimeters.With this in mind, a range surface can be seen as a perfect 3D representation of the surfaceof an object plus some added noise. The latter is Gaussian distributed with a standard deviationproportional to the object distance. When registering two range views, we therefore expect theminimum average Euclidean distance between corresponding points in each view to be twice themean absolute sampling error (the errors in each view get added). The cost function computesan approximation to this average distance. Therefore, when two views are properly registered,we would expect the minimum cost function value to be around 1.25 millimeters, which is twicethe mean absolute error for an object scanned at a distance of 40 centimeters.Before registration, it was necessary to preprocess each of the range images. This was doneusing simple segmentation to speci�cally remove background information. In addition spuriousdata points were eliminated.Figure 7 shows a typical example of multiple view range data acquired using the turntable.Nine range views of an owl �gurine acquired at 40 degree intervals are shown after preprocessing.4.2 Search Control ParametersThe parameters which control the registration process can be divided into two categories. The�rst set a�ects the size of the search space and the general shape of the cost function. Thesecond actually controls the VFSR minimization. These are briey discussed below.When performing the registration of two range views, an estimate of the 3D transformationbetween the views is available as a starting point of the search. These estimates are obtained
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(a) 0 degrees (b) 40 degrees (c) 80 degrees

(e) 160 degrees (f) 200 degrees

(i) 320 degrees(g) 240 degrees (h) 280 degrees

(d) 120 degrees

Figure 7:This �gure shows nine range images of a small owl �gurine seen fromnine di�erent viewpoints. The views were obtained by rotating the object on aprecision turntable by 40 degree intervals. The views shown above were prepro-cessed in order to remove spurious data points and background surfaces, suchas the platform of the turntable on which the object was resting, so that onlythe owl's surface remained.



www.manaraa.com

26from the positioning devices used for data acquisition (precision turntable or robot arm system)which are calibrated prior to acquisition. To limit the search, an upper and lower bound is setfor each of the motion parameters tx, ty, tz, rx, ry and rz. These bounds are set by specifyinga search range �tx;�ty;�tz;�rx;�ryand�rz around the estimate of each motion parameter.Using the transformation estimate, the lower and upper bounds for each parameter is computedby respectively, subtracting and adding the � range from the estimated parameter.Appropriate settings of the search range were determined by experimentation with variousrange views obtained with the turntable and the robot arm. Search ranges of �2 millimetersand �1 degree seem to be adequate when the turntable is used, and search ranges of �10millimeters and �5 degrees when the robot arm is used.The other parameters a�ecting search performance are related to the evaluation of the costfunction. These were determined experimentally as follows (see Section 3.2 and [1]):(i) control point sample interval (=5)(ii) overlap factor (=30%)(iii) distance threshold (=5 millimeters)The experiments were done with di�erent objects in order to obtain a representative idea ofparameter sensitivity.The second set of parameters controls the VFSR algorithm. The most important of theseare: T0 initial parameter temperatureTRS temperature ratio scale (mi = � ln(TRS))TAS temperature annealing scale (ni = ln(TAS))The VFSR minimization program was provided by Dr. Lester Ingber� and was adapted tothe registration task discussed in this paper[5]. In this computer program, more parameters areprovided to control search than the ones actually mentioned above. However, the ones citedare the primary parameters for controlling the annealing process.It was determined through extensive and well controlled experiments that setting T0, TRSand TAS to 1.0, 0.001 and 10000, respectively, yielded excellent registration results [1]. Searchconvergence using these parameters was relatively insensitive to the type of range views beingregistered . The experiments were performed for two very di�erent objects(the owl and metalpipe) and the same settings were found to be optimum in both cases.�Dr. Lester Ingber, Lester Ingber Research, P.O. Box 857, McLean, VA 22101.



www.manaraa.com

274.3 Dual-View Registration ExperimentsThis section presents various experiments realized with the registration algorithm describedpreviously. All the experiments discussed here consist of the registration of two range viewsobtained from di�erent objects.Two views were taken of a white owl �gurine having a slightly textured surface. Both wereobtained with the precision turntable. The range�nder camera was held in a �xed position whilethe object was scanned, rotated clockwise by 40o, and scanned again. The two views are shownin Figures 7 (a) and (b).Because the turntable is very precise, the transformation estimate it provides is always veryclose to the optimal registration transformation. In order to perform a more rigorous test of theregistration algorithm, the motion parameters of the estimate were altered when the turntablewas used for data acquisition. A perturbation of 8 millimeters and 4 degrees was added to eachof the translation and rotation parameters, respectively. The resulting transformation was usedas the initial estimate for the registration. This was also done for the experiments with theteapot seen in Figures 10 (a) and (b).The setting of the various search parameters used for the owl �gurine and the results ob-tained for the registration are shown in Table 1. These and all subsequent experiments weredone on a Silicon Graphics Iris 4D workstation. Figure 8 (a) shows the two views using theinitial transformation estimate; �gure 8 (b) shows the two views registered with the optimumtransformation found by VFSR. In order to di�erentiate between the two views, one of them isrendered as a grid and the other as a shaded surface. An interweaving of the grid and shadedsurfaces indicates high quality registration. This can be easily seen in �gure 8 (b) where themesh of the �rst view seems to be partially immersed in the shading of the second.Another indication of registration quality is a display of the Euclidean distance measurebetween the two range views. As shown in Figure 9, the distance is represented by variousshades of gray. A dark shaded point indicates that the distance between this point and itscorresponding point in the other view is small. A light shade indicates a large distance. Theminimum distance, 0 millimeters, is indicated by black and the maximum, the distance threshold,is indicated by light gray. Points without correspondence and those whose distance to theircorresponding point in the other view is greater than the distance threshold are shown with thelightest gray. A gray level scale is provided (Figure 9 (e)) to indicate the distance between eachpoint in one view and the other. The initial and the �nal distance between the views is shown.As an example, �gures 9 (a) and (b) show the distance between the two views when the initialestimate is used and �gures 9 (c) and (d) show the distance when the views are registered usingthe transformation found by the algorithm. The dark regions clearly indicate where the twoviews overlap. We can observe that the overlap region of each view is dark, indicating excellentregistration.
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28The value of the cost function is a good indication of registration quality. Its value for theinitial transformation estimate is 4.30 mm and the optimum found was 1.05 mm. This is lowerthan the expected cost of 1.25 mm due to the range�nder sampling error (see Section 4.1) andis a good indication that the �t is near optimal.Other dual-view registration results obtained for various 3D objects are shown in Figure 10.The range views of the metal pipe, the fruits and the model car (Figure 10 (c) (d), (e) (f)and (g) (h), respectively) were acquired with the eye-in-hand robot system. This indicates theability of the registration algorithm to handle the usually large errors occurring in the initialtransformation estimate obtained with such a positioning system.Registration Parameters Used For The Owl FigurineCost Control point sample interval 5Function Overlap factor 0.3Parameters Distance Threshold 5.0VFSR T0 1.0Parameters TRS 0.001TAS 10000Search Space Parameters tx ty tz rx ry rzTe (from calibration) -48.374565 -148.612106 83.162674 -33.809300 5.700111 -19.279339Te (after perturbation) -40.374565 -140.612106 91.162674 -29.809300 9.700111 -15.279339Search �tx �ty �tz �rx �ry �rzRange 10.0 10.0 10.0 5.0 5.0 5.0Initial Cost 4.30 mmResults obtainedOptimum transformation tx ty tz rx ry rzfound by VFSR -48.20997 -149.3088 82.92254 -33.70389 5.699673 -19.13927Optimum Cost 1.05 mmNumber of Cost Function Evaluations 27044Registration Time (Note: varies with system load during experiment) 5 min. 57 sec.Table 1:Parameters used in the registration of owl range views and resultsobtained.4.4 Multiview RegistrationThe registration of two range views is the �rst step in the integration of a set of range views.The goal of multiview registration is to construct a representation of the complete surface of an



www.manaraa.com

29
(a) (b)Figure 8:Figure (a) shows the relationship between the two views of the owl�gurine as de�ned by the initial transformation estimate. Figure (b) shows theregistration of the views obtained from the optimum transformation found bythe registration algorithm.object by registering multiple range views. The process consists of combining the various rangeviews of an object into a unique coordinate frame. Once this is accomplished, we can use theresult for generating models and other higher level tasks, such as object recognition and robotgrasping.The most straightforward way of performing the registration of multiple views of a 3Dobject is to register the views in pairs. For example, say we acquire six range views of an objectnumbered from 0 to 5 such that view 0 overlaps view 1, view 1 overlaps view 2, and so on,until view 5 overlaps view 0, thus completing a circuit around the object. With these six rangeviews, we could register view 0 with view 1, view 1 with view 2, and so on. We do not registerview 5 with view 0, since the transformation between view 5 and view 0 is indirectly speci�edby the previous transformations. Let the transformation between view i and view j be Tij;then to register all six views, we need to determine �ve transformations: T01, T12, T23, T34 andT45. With these �ve transformations, the motion relationship between any two range views iscompletely de�ned. For example, the transformation between view 5 and view 0 is given byEquation (27). T50 = T�105 = (T45 � T34 � T23 � T12 � T01)�1= T�101 � T�112 � T�123 � T�134 � T�145 (27)
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distance > Distance Threshold(e)Figure 9:Figures (a) and (b) show the distance between the views when theinitial transformation estimate is used. Figures (c) and (d) show the distancebetween the views when registered by the optimum transformation found by thealgorithm. Figure (e) presents the scale for interpreting the gray levels in theabove images. Figures (c) and (d) are very dark indicating excellent registration.
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(a) (b) (c) (d)
(e) (f) (g)

(h)Figure 10:Composite image of four di�erent dual-view registration experiments.Figures (a) and (b) show two views of a teapot before (related by the transfor-mation estimate) and after registration (related by the optimum transformationfound by the algorithm), respectively. Similarly, �gures (c) and (d), (e) and (f),and (g) and (h) show the registration of two views of a metal pipe, fruits, anda model car, respectively.
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32where Ta � Tb is the composite of transformations Ta and Tb.The main problem with this approach is that, even though the �ve transformations foundbetween pairs of views might be optimal, global registration will not be. A typical problem isthat all the views from view 0 to view 5 seem to be properly registered, but view 5 and view 0are relatively poorly registered. This is a consequence of accumulated errors in the registrationsfrom view 0 to view 5. View 0 and 1 may be well registered by T01, but a very small error stillexists. The same is true of all the other transformations. This small error in each intermediatetransformation is compounded, so that by the time the last view wraps around to the �rst, alarge error has accumulated.To avoid this problem, the views can be registered simultaneously and the error between the�rst and last views can be taken into proper consideration. Of course, this makes more sensefrom a theoretical point of view as well. The experiment conducted here uses this approach. Anew cost function is de�ned for the global registration of multiple range views as the sum ofthe individual costs of all direct plus the cost of any indirect transformations. A direct trans-formation is one that directly relates two range views. For example, transformation T01 relatesall the points in view 0 to the local coordinate system of view 1. An indirect transformationsis one that indirectly relates one view to another through a series of direct transformations.It is completely de�ned by a set of direct transformations. For example, transformation T50 isan indirect transformation and is completely de�ned by �ve direct transformations as shown inEquation (27). The new cost function to be minimized is thusglobalcost = cost(T01) + cost(T12) + cost(T23) + cost(T34) + cost(T45) + cost(T50) (28)where cost(T ) is the cost function de�ned in Equation (7). With this new cost function, a smallerror in all of the direct transformations is reected as a large error in the indirect transformation.Thus global optimization ensures that all views �t together properly, not just in pairs.A multiview registration experiment was performed for the owl �gurine using a total of �verange views. Data acquisition was performed with the precision turntable. The object wasrotated by 60 degrees between views. Range views at 0, 60, 120, 180, 240 and 300 degreeswere obtained. The search parameters used in the registration and the results obtained areshown in Table 2.Figure 11 illustrates the problem arising when the range views are registered two at a time.In this case, view 0o was registered with view 60o, view 60o with view 120o , 120o with 180o,180o with 240o, and �nally 240o with 300o. Figure 11 (a) shows all the views together as seenfrom above. View 0o is rendered as a grid surface and all the other views are rendered as shadedsurfaces. This helps to distinguish views 0o and 300o from one another. We observe that allthe views appear to be well registered except for the last (300o) and �rst views (0o). The large
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33Parameters Used For Multiview Registration Of The OwlCost Control point sample interval 5Function Overlap factor 0.6Parameters Distance Threshold 5.0VFSR T0 1.0Parameters TRS 0.001TAS 10000Search Space Parameters tx ty tz rx ry rzTe (from calibration) -88.974091 -189.533615 152.127502 -49.844002 12.405737 -27.003699Search �tx �ty �tz �rx �ry �rzRange 2.0 2.0 2.0 1.0 1.0 1.0Initial Cost 4.30 mmResults obtained using pairwise local registrationOptimum Transformations tx ty tz rx ry rzT0o�60o -80.19219 -190.2726 144.5746 -48.30938 10.68813 -26.0654T60o�120o -87.16365 -188.0008 144.1832 -47.94806 11.73128 -27.74214T120o�180o -87.70704 -189.8285 149.0761 -49.23435 11.84017 -28.28247T180o�240o -84.26648 -187.5514 143.0579 -47.77332 11.47543 -26.6186T240o�300o -88.60028 -187.3025 145.4442 -48.2851 12.15576 -27.7237Which Local Registration T0o�60o T60o�120o T120o�180o T180o�240o T240o�300oOptimum Cost 1.58 mm 1.49 mm 1.26 mm 1.14 mm 1.38 mmNumber of Cost Function Evaluations 10720 29383 33911 18457 25773Registration Time 4m 56s 2m 24s 5m 33s 2m 56s 2m 21sResults obtained using globalOptimum Transformations tx ty tz rx ry rzT0o�60o -90.71757 -189.848 152.031 -49.70864 12.76964 -27.34013T60o�120o -90.84272 -191.3197 154.0251 -50.10959 12.79042 -26.89138T120o�180o -90.41573 -189.4754 150.6458 -49.32046 12.42318 -27.7174T180o�240o -89.9021 -190.2839 152.058 -49.82738 12.46874 -27.62393T240o�300o -87.61896 -191.2735 152.6673 -49.89927 12.21386 -26.53895Optimum Cost 1.55 mmNumber of Cost Function Evaluations 10654822Registration Time 83 hr. 17 min. 53 sec.Table 2:Parameters used for global registration of the owl views and resultsobtained.
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34gap between these two views results from an accumulated error in all transformations betweenthe �rst and last view. Figure 11 (b) is the same group of registered range views seen from theside. Figure 11 (c) is an enlargement of a section of �gure (b) to more vividly demonstrate thelarge gap between the �rst and last view.Figure 12 shows the result obtained when global optimization is performed to register thesix range views. As can be seen from Table 2, the time required to perform this experimentis extremely large. This is due to the fact that the annealing time increases exponentiallywith the number of dimensions. When registering range views pairwise, the search space issix-dimensional (one for each motion parameter). When six range views are registered simulta-neously, the search space has 30 dimensions (5 transformations of 6 parameters each). Becauseof this, the annealing time is very large. To reduce this computing time, the algorithm couldactually be partially parallelized. The global cost function de�ned in Equation (28) is a sumof partial cost values, one for each of the transformations involved in the global registration.These individual costs could be computed on separate processors, thereby signi�cantly reducingthe overall time.Nevertheless, the results obtained with global registration are much superior to pairwiselocal registration. We can now see that the �rst and the last view are properly registered. Asin Figure 11, the registered views are shown from above (a), from the side (b), as well as anenlargement of a section of �gure (b). This time, there are no gaps between the �rst view(shown as a grid) and the last.Figure 13 is a comparison of the registration quality obtained with pairwise local and globalregistration. The cost function was evaluated between each pair of range views. With pairwiseregistration, even though each local �t is good, we can clearly see the large registration errorpresent between the 300o and 0o views of the owl, as indicated by the high cost function (3.18mm).Finally, the views were processed to remove any redundant data. Overlapping surfaceswere eliminated by replacing them by their averages. The result obtained is a set of pointsrepresenting the complete surface of the owl �gurine. Di�erent views of the model obtained areshown in Figure 14. The owl is rendered by �tting a small shaded plane at every point of itsmodel. Figure 14 (a) shows all the points forming the model, each indicated by a small squareplane. Figures 14 (b), (c) and (d) illustrates the model seen from various orientations.5. ConclusionsThis paper presents a novel approach for the registration of range images. The method relies onformulating the registration task as an optimization problem by de�ning a cost function whichmeasures the quality of registration between two range views. To do this for a speci�c rigid
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(a) (b)

(c)Figure 11:This �gure illustrates the problem arising when registering multipleviews without performing global optimization. Local optimization is performedto register range views two at a time. In �gure (a) we observe that, although the�t between consecutive views is optimized, the �rst (shown as a grid) and lastview are poorly registered. Figure (b) shows the same group of registered rangeviews seen from the side, illustrating the gap between the views more clearly.Figure (c) is an enlarged portion of �gure (b), emphasizing the large distancebetween the �rst and last view.
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(a) (b)

(c)Figure 12:This �gure shows the results obtained when registering multiple viewsusing global optimization. Six range views were registered simultaneously. Theresult is shown seen from above (�gure (a)) and from the side (�gure (b)).Figure (c) is an enlargement of a section of �gure (b) illustrating how closelythe �rst (shown as a grid) and last view are registered.
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(a) (b)
(c) (d)Figure 14:After the six range views of the owl have been registered, redundantdata is removed and a 3D model is constructed. The model consists of a setof 3D points, along with a normal specifying the orientation of the surface atthat point. The surface of the model is rendered by �tting a small shaded planeat each point, oriented along the normal at that point. Figure (a) shows theset of 3D points forming the model; the background was set to black in orderto ease the visualization of the points. Figures (b), (c) and (d) show di�erentviewpoints of the model.
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383D transformation, the cost function evaluates the sum of Euclidean distances between controlpoints in one view after transformation and corresponding points in the other view. Pointcorrespondence between range views is rapidly established by inverting the set of calibrationequations of the range�nder.Using experimentation, it was determined that the cost function exhibited multimodal be-havior, showing one signi�cant global minimum surrounded by a large number of minor localminima. Because of these multiple local minima, the use of conventional gradient descentoptimization was dismissed. The VFSR optimization technique was chosen for its stochasticproperties, which makes it inherently robust for �nding a global optimum in the presence ofsuch multiple local optima.A series of dual-view registration experiments was presented �rst. The registration algorithmperformed well in all cases, even when optimization was initiated signi�cantly far from theoptimum solution. The registration of the metal pipe, car and fruit views showed that thealgorithm was capable of registering range views acquired with a eye-in-hand system, wherethe initial transformation estimate provided by the robot arm is usually quite inaccurate. Theregistration of the teapot range views shows the robustness of the algorithm to self-occlusion.A multi-view registration experiment was presented in the last section of Section 4. Itwas observed that when range views were registered in pairs, an accumulated error in eachintermediate transformation would result in a large registration error between the �rst andlast range views. When the range views were simultaneously registered with a rede�ned costfunction, this error was eliminated. However, the main problem with this approach is that theconvergence time increases exponentially with the number of views registered. Because of this,multiview registration is not quite practical for applications that require results in a short time,although parallel processing could signi�cantly reduce the computational time. Nevertheless, thealgorithm displayed remarkable performance. A surface model constructed from six registeredviews of the owl �gurine showed the feasibility of creating a complete model from the set of 3Dpoints of all range views obtained after registration.Future improvements of the algorithm could involve the following:1. The data acquisition process could be automated by computing the next viewing positiondirectly from the range data according to some attentional criterion (see Whaite [17,18]).2. Instead of the normal annealing schedule of VFSR, a better termination condition shouldbe found for the registration. Here are some suggestions:� Terminate search once a speci�ed percentage of points is within a certain distancethreshold (for example, stop when 90% of control points are within 0.5 mm fromthe other range view.).
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39� Terminate search when the value of the cost function is below a certain desiredvalue. For example, one could make use of the known distribution of the range�ndersampling error and the average scanning distance in order to determine when tostop. The search could be stopped when the value of the cost function was less thanthe mean absolute sampling error plus some tolerance factor.3. It may be possible to extract the control points based on their strategic importanceinstead of using a regular sampling interval. This intelligent selection of control pointscould produce better registration results and faster convergence if less control points werenecessary to attain the same (or better) registration quality.4. When performing multiple view registration, it might be advantageous to integrate viewsgradually by registering the next range view directly with the already existing model.Merging range views and eliminating redundant data in order to create a surface modelreduces the amount of information one has to carry and might speed up the registrationprocess.5. A study of a parallel implementation. When registering multiple views, the evaluation ofthe cost function requires measuring the distance between two views at a time. This couldbe divided so that separate computers were responsible for evaluating the cost functionfor separate pairs of range views.The research presented in this paper is an attempt at solving the complex problem ofmultiview range image registration. It is hoped that this new approach will soon lead to apractical system for 3D modeling.AcknowledgementsWe thank Dr. Lester Ingber for kindly providing the VFSR (ASA) computer code as wellas participating in valuable discussions. We would also like to thank Marc Bolduc, SamirShah, Pierre Trmblay, Gilbert Soucy and Kenong Wu for their advice, expertise and technicalassistance. G.B. would like to thank NSERC for its �nancial support in the form of an NSERCPostgraduate Scholarship. M.D.L. would like to thank CIAR and PRECARN for their �nancialsupport. This research was partially supported by the Natural Sciences and Engineering ResearchCouncil of Canada by a Strategic Research Grant.
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